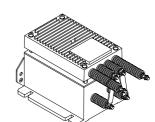
Voltage Transducer LV 200-AW/2/SP70 V_{PN}

For the electronic measurement of voltages : DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high voltage) and the secondary circuit (electronic circuit).

Electrical data V _{PN} Primary nominal r.m.s. voltage 4200 V 0..±6800 V_{P} Primary voltage, measuring range V Measuring resistance \mathbf{R}_{M} $\mathbf{R}_{\mathrm{M\,min}}$ $\mathbf{R}_{_{M\,max}}$ @ ± 4200 V max 120 with ± 24 V 30 Ω @ ± 6800 V max 30 55 Ω Secondary nominal r.m.s. current 80 mΑ I_{SN} 4200 V/80 mA Conversion ratio K - 30 % .. + 20 % V V_{c} Supply voltage ± 24 Current consumption 30 + I_s mΑ I_c Ň, R.m.s. voltage for AC isolation test, 50 Hz, 1 mn 12¹⁾ kV 1 ²⁾ kV 0.53) kV R.m.s. voltage for partial discharges extinction @ 10 pC 4.8 ٧ kV

Accuracy - Dynamic performance data

Х _G	Overall Accuracy @ V _{PN}	- 25°C + 70°C	± 1.5	%
С	Linearity		< 0.1	%
I _o	Offset current @ $I_p = 0$, $T_A = 25^{\circ}C$	- 40°C + 80°C	Typ Max	mΑ
I _{o⊤}	Thermal drift of I_o		± 0.3	mA
t _r	Response time @ 90 % of $V_{p \max}$		± 0.3 ± 0.6	μs


General data

T _A T _S N	Ambient operating temperature Ambient storage temperature Turns ratio	- 40 + 80 - 50 + 85	0° 0°
N R ₁ R _s P	Primary resistance @ $T_A = 25^{\circ}C$ Secondary coil resistance @ $T_A = 80^{\circ}C$	105000 : 2500 2.2 41.5	ΜΩ Ω W
r m	Total primary power loss @ V _{PN} Mass Standards ⁴⁾	8 2 EN 50155	kg

Notes : ¹⁾ Between primary and secondary + shield

²⁾ Between secondary and shield

- ³⁾ Between secondary + shield and external shield
- ⁴⁾ A list of corresponding tests is available

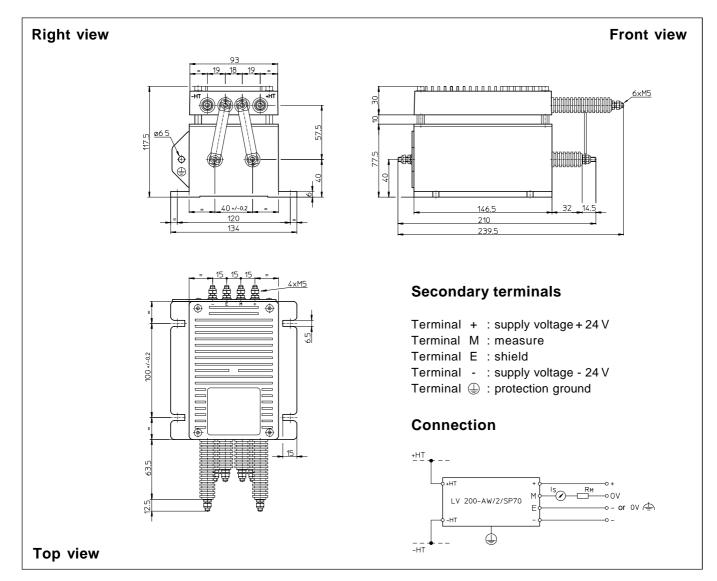
4200 V

Features

- Closed loop (compensated) voltage transducer using the Hall effect
- Insulated plastic case recognized according to UL 94-V0
- Accessible electronic circuit
- Shield between primary and secondary circuit
- Primary resistor **R**₁ incorporated into the housing.

Special features

- $V_{p} = 0 .. \pm 6800 V$
- $\mathbf{T}_{A} = -40^{\circ}\text{C}..+80^{\circ}\text{C}$
- $\mathbf{X}_{G} = 2\% (-40^{\circ}C..-25^{\circ}C;+70^{\circ}C..+80^{\circ}C)$
- In-built primary resistance R₁ is connected in 2 equal parts to both sides of the primary winding
- Better behaviour with potential variations in common mode
- Screening around connections of secondary
- Railway equipment.


Advantages

- Excellent accuracy
- Very good linearity
- Low thermal drift
- High immunity to external interference.

Applications

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- Uninterruptible Power Supplies (UPS)
- Power supplies for welding applications.

Dimensions LV 200-AW/2/SP70 (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

- General tolerance
- Fastening
- Connection of primary
- Connection of secondary
- Fastening torque
- Connection to the ground

- 4 holes \varnothing 6.5 mm M5 threaded studs M5 threaded studs 2.2 Nm or 1.62 Lb - Ft
- hole \emptyset 6.5 mm

Remarks

- $\mathbf{I}_{_{\mathrm{S}}}$ is positive when $\mathbf{V}_{_{\mathrm{P}}}$ is applied on terminal +HT.
- The primary circuit of the transducer must be linked to the connections where the voltage has to be measured.